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ABSTRACT

We describe some techniques for the construction of three-dimensional composite overlapping grids

using the grid construction program CMPGRD. The overlapping approach can be used to generate

grids for regions of complicated geometry. The grids can be constructed to be smooth and free from

coordinate singularities. The ability to create smooth grids for complicated regions is an important

first step towards the accurate numerical solution of partial differential equations. We describe how

to create grids for surfaces defined by cross-sections such as an airplane wing. We also describe how

the patched surfaces generated from a CAD package can be used within the CMPGRD program and

how grids can be created in regions where surfaces intersect.

INTRODUCTION

We describe some techniques for the o:mstruction of three-dimensional composite overlapping

grids using the grid construction program CMPGRD. A composite overlapping grid consists of a

set of logically rectangular component grids which cover a region and overlap where they meet.

Interpolation conditions connect solution values defined on the grid. In the paper Composite Meshes

for the Solution of Partial Differential Equations [1] we described CMPGRD and discussed techniques

for the solution of elliptic and hyperbolic partial differential equations (PDEs) on overlapping grids.

Our examples were limited to two-dimensional problems. In this paper we emphasize the extensions

made to the code for the generation of three-dimensional grids. The overlapping approach can be

used to generate grids for regi, ms of complicated geometry. The region can be divided into a number

of sub-domains for which a component grid can be more easily created. The component grids can

be constructed to be smooth and free from coordinate singularities. Once all component grids have

been created the CMPGRD program will automatically determine the interpolation conditiong which

connect t,he grids. CMPGRD has a very general algorithm for doing this which supports any number of

component grids overlapping in any order. CMPGRD can generate the overlapping grids appropriate

for higher order interpolation, higher order discretization, cell-centred or cell-vertex grids and the

sequence of grids which can be used for the multigrid algorithm [2]. Some other references which

describe overlapping grids and the solution of PDEs thereon include [3] [4] [5] [6] [7].

The problem of grid constructi(m can be made simpler by using the composite overlapping grid

technique. However, the task of creating component grids, especially in three-dimensions, can still
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be very difficult. In this paper we discuss some ways to create three-dimensional component grids

suitable for use with CMPGRD. The emphasis here is on techniques which are closely linked to the

overlapping approach and to methods which avoid coordinate singularities.

We first describe how to create grids for surfaces defined by cross-sections, such as an ellipsoid or

wing, where the cross-sections may converge to a point at one or both ends. The basic underlying

problem here is the creation of a composite grid about a sphere which is free from singularities. A

solution to this problem is to cover the sphere" with more than one patch. We use an orthographic

projection to create grids over the north and south poles of the sphere. This approach for a sphere

can be generalized to more general surfaces which are defined by cross-sections: a separate patch is

placed on the end of the surface where the cross-sections converge to a point.

A complicated object such as an airplane consists of multiple surfaces which connect to each

other, such as when a wing joins a fuselage. Using the cross-section technique component grids can

be created for the wing and fuselage but there remains the problem of connecting the wing to the

fuselage. The connection may either be smooth, in which case a fillet grid is appropriate, or the

connection may be a corner in which case the curve of intersection between the two surfaces should

be an edge of a grid. We consider the latter case here. One way to create a grid for the wing which

matches to the fuselage is to project the end face of the wing grid onto the surface of the fuselage.

We present an example of this technique. We have developed another, more general, approach for

creating grids in the region where surfaces intersect. This method begins by computing the curve of

intersection between the surfaces and then reparameterizing the surface using the intersecting curves

to define the portion of the surface to use. We give several examples to illustrate this approach.

For the description of complicated three-dimensional regions there are many advantages to using

a computer aided design (CAD) package. We show how the patched surfaces generated from a CAD

package can be used within the CMPGRD program. Although the patched surface may be smooth,

the parameterization of the surface may not be smooth and it is thus necessary to reparameterize the

surface. These reparameterized surfaces can then be used in CMPGRD to create overlapping grids.

We show an example of a gridforawingconnected to an engine nacelle by a pylon.

CREATING THREE-DIMENSIONAL OVERLAPPING GRIDS

A composite overlapping grid consists of a set of component grids. Each component grid covers

a portion of the computational region. Component grids overlap where they meet. Solution values

are matched by interpolation at the overlapping boundary. In order to determine how to interpolate

between grids CMPGRD requires knowledge of the component grid mapping not only at grid points

but also at all intermediate positions. Thus the component grid must be defined as a continuous

mapping.

Component grid mapping: For the purposes of CMPGRD a component grid is defined as a

smooth mapping from a unit cube, r, to the computational domain x E R 3. CMPGRD needs to

evaluate this mapping at any point r in the unit cube and requires both the image of the mapping,

x(r), and its derivatives 0x(r)/0r:

0X

Component Grid Mapping: r ----,(x, -_-r).

A component grid has a number of characteristics associated with it. For example, each face of the

416



componentgrid has a boundary condition. Tile face may be part of a true boundary, or the grid may

be periodic, or the derivative of the grid may be periodic or the face may be used for interpolation.

CMPGRD provides various features for creating tw_)-dimensional and three-dimensionM compo-

nent grids. One approach is for the user to provide a c,,mplete description of the component grid

which is supplied to CMPGRD as an externally defined grid (i.e. Fortran subroutine). In this case

one must supply the mapping from the unit cube to the c_,mputational domain and the derivatives

of this mapping. This approach is useful if a grid has been created by some other package. If the

component grid mapping is only known at a set of grid points then the mapping can be defined

everywhere by using interpolation. CMPGRD has such a component grid interpolation routine.

Another way to define a three-dimensional grid is to first define a surface in three-dimensions as

an externally defined curve. This surface can then be automatically extended in the normal direction

to create a three-dimensional grid. Alternatively two offset surfaces can be blended to form a space

filling grid.

Sphere in a Box: As a first example of creating a three-dimensional composite grid we consider

the problem of generating a smooth grid for the region exterior to a sphere and interic,r to a box in

which the sphere sits. We describe two ways to create a ccmq)(,site grid for this problem.

A grid around the sphere can be created using a maplfing defined by the standard spherical-polar

coordinate transformation:

Sphere : (rj, r2, r3)

= (ncos(O)cos(¢),nsin(0)cos(¢),nsin(¢))

This is not the recommended method to create a grid since the mapping has singularities at the north

and south poles. These singularities will spell trouble when one wants to solve a PDE ()n the grid.

In fact CMPGRD must know which grids are singular in order for its algorithm to work properly.

By using multiple patches it is possible to cover the surface of a sphere with grid transfi)rmations

so that there are no coordinate singularities. At each pole we create a grid defined by an _)rthograI)hic

projection, see figure (1). Consider the set of points (Sl,.S2,-R) on the plane which is tangent to the

sphere (radius R) at the south pole. The orthographic projecti,)n associates a point (s_, s2,-R) on

this plane with a point x = (xl, x_, x3) on the sphere as the intersection between the sphere and the

line through the north pole and the point (sl, s_,-R). This point of intersection is given by

Orthographic:(,s,,s2) --* (z,,x2,.T_)

(_,,_:_,x_) = (pc<,s(0),psin(0),-Q

= ((,_ + ._)' (,,,_+ ._)' - (_ + ._)

where

(_=2R , .s_ _ , sin(0) =---"= ._,+ _ , cos(0)- '_'
.q S

(_2._ ¢_2 __ 8 2

p= c_a,2+s2 , _=o_--(_+s2 , (_+p2 = //2

To complete the definition of the grid transfi)rmati,,n we define the relationship between the unit,

square coordinates (r,, "2) and the (s,, s2) coordinates,

._,= (,.,- .5).,o , .,_= (,,,- .s) .,,,
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where the constants s_, sb determine the extent of the orthographic patch. For later reference we note

the derivatives of the orthographic transformation:

0p p ( 0¢ p2 d¢ -p
Os - s ll ' Os - R ' dp ( (1)

as sx as s2 o0 sin(e) o0 cos(e)

Osl ._ ' Os_ s as1 s ' as2 s (2)

The full three-dimensional component grid is defined by extending each surface in the normal

direction. The box is covered with a simple rectangular grid. The composite grid is shown in

figures (3) and (4).

Surfaces defined by cross-sections: The method described in the previous section can be

generalized to create grids for surfaces defined by cross sections. We assume that the surface is

defined as a function of a periodic variable e, 0 _< 0 _< 2% and an axial variable (, -1 _< ( _< +1:

x = f(8, ()

When ( is fixed f(0, ( = (0) will define a cross-sectional curve on the surface. The cross-sections

should converge to a point at, ( = ±1. We will also see that the cross-sections must also tend to an

elliptical shape as ( --_ +1 ill order that there be no singularity in the derivative of the mapping at

the poles.

The cross-sectional surface will be covered by three patches: a central cylindrical patch and two

end patches defined by orthographic projections. The central patch is defined by the mapping

(_,,,.:) -_ (_,,_:,x_)
x : f(8, C)

Ox Ox Of Of

(0_,' o,._) = (2_ _, ¢ __)

where 8 = 2_ r, , (= ¢ (_- .5)

The constant fie _< 2 determines the portion of the sphere covered by the central patch. When _ = 2

the central patch will extend all the way to each pole. The orthographic patch at the ( = +1 pole is

defined by

x : f(8, ()
0x p . 1 Of

0,., - }

0x _ P[ cos(O){--z-;10f0,-_ s v._ }

(3)
(4)

cos(8)n{P_}] (s)

sin(O)n{P__}] (6)

where p, s and 8 are the va.riables associated with the orthographic patch:

,_,: (,'1- .s) so , ._ = (_ - .s) ,_ , s_ =_,_+_

_.os(8) _' s_ _s _ - s_
=-- , sin(e)=-- , p- (=or 2s s (_2 + s 2 ' + 8 2

, p2 + (_ = R 2
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The Jacobian derivatives of the mapping, equations (5), (6) are determined in the standard way

using the chain rule

Ox 08 Of O_ Of
-- .4- ---

Or1 Or, O0 Orl O(

- sin(O) Of _p2 Ofb-g+ --if-cos(0)_.

These derivatives are written in the special form of equations (5),(6). We assume that we have a

subroutine which defines the cross-sections f(0, () and also certain derivatives of the cross-sections:

1 Of Of
Cross-section routine: (0, _) _ (fC0, _), -Z-_,PW7) (7)

p utT ut,

We choose to have the routine return (pt_,p_) as opposed to (_, o_)in order to avoid inaccuracy

in numerically computing the Jacobian. In fact, in order that the derivatives of the patches exist at

the poles the cross-sectional function f must satisfy

lim,-.o [ cos(O) o0_fp

Of

lims-.0 [sin(0)_---p +

sin(a) Of]s _ = cl (s)

cos(a) Of]_ = C_ (9)

where the constants C1, _t2 must be independent of O. These conditions will be satisfied provided

that the cross-sections tend to an elliptical shape at the poles:

f,(8, () ,,_ p(aeos(0) + bsin(O)) .

Condition (8), for example, follows from writing equations (5) in the form

Ox _ [cos(O) Of sin(O)__lOf + _[_1 p ( _ 1)(scos(O))(s-_pjof '_

and noting that

lim l(p_( _ 1)(s cos(0)) = O.
p-,O s 2 k S R

Ellipsoid: A grid for an ellipsoid with principal axes of lengths (a, b, c) can be created using the

cross-sectionfunction

Ellipsoid:(0,_)

(x,,x2,x3)

with Jacobian derivativesdefined by

[ _Of,/O0 _Of2/c30pc3f]/O( pOf_/c3(

(x,,_,_z)
= (fl,f2, f3)= (apcosCO),bpsin(O),c()

po/_/o¢ = -_¢cos(a) -b(sin(O) _0

The resulting grid is shown in figure (5).
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Wing with Joukowsky Cross-Section: A slightly more complicated problem involves the

generation of a grid around an wing which sits in a box. For simplicity we define the wing to have

cross-sections which are Joukowsky airfoils. At the wing tip the cross-sections are forced to become

elliptical since this is a necessary requirement for the grid to be smooth. The mappings are thus
defined as

Joukowsky wing: (rl,r2) _ (z,,z_,x3)

(xl,x2, x3) = (fa(_),g(p)f2(O,_),g(p)fz(O,())

The cross section functions ]'2 and f3 are defined as Joukowsky airfoils:

f_ + ifz = w + l/w

w = ae _° +ide'_f4(p)

]'4 -- g(P) - g'(1)P

The function g(p) (recall p = _--2--_) is chosen to be g(p) = tanh(flp) and causes the cross-sections

to converge to a point. The function f4 satisfies f4 (P = 0) = 0 causing the airfoil to become elliptical

at the tip and f_(p = 1) = 0 causing the cross-section at (¢, p) = (0, 1) to lie in the in the z2 - zz

plane. We make use of this latter result when we attach the wing to a fuselage in the next section.

For the airfoil shown the free parameters defining the airfoil were taken as

a=.85, d=.15, 6= 15°= 15(_'/180)', /3=2

In order to have sufficient grid lines in locations of highest curvature we stretch the grid lines at the

leading and trailing edges.

Wing on a fuselage - first approach: In this section we consider the problem of attaching a

wing to a fuselage. Here we describe a relatively simple procedure to accomplish the joining. Later

we describe another solution to this problem. The procedure is illustrated in figure (7) and consists

of the steps:

1. Create component grids for the wing and for the fuselage.

2. Deform the end of the wing grid to be the same shape as the piece of the fuselage it will attach

to.

3. Position the deformed wing onto the fuselage.

For step 1 we use the wing grid as defined in the previous section. For simplicity we define the fuselage

to be part of a cylinder:

Cylinder : (ra, r2)

0 =  (rl -.5)

--. (xl,
, R = R1 + R2r2

= (Rcos(t_),y_ + yt_r3, nsin(_)).

To perform step 2 we deform the end of the wing to lie on a cylinder.

accomplished with the mapping

For our geometry this is
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which transforms the end of the airfoil onto the cylinder. The mapping has an exponentially small

effect on parts of the wing which are far from the end (figure (7b). Finally we move the wing to join

the fuselage. The resulting composite grid will have the topology shown in fgure (7c).

In general, to perform step 2 of deforming the end of the wing we will need to know how to map

a plane (or the end face of the wing grid) onto the surface of the fuselage. It is also important to

perform this deformation without changing the surface shape of the wing. The composite grid for

a Joukowsky wing attached to a cylinder in a box is shown in figure (6). Ttle figure shows a cut

through the wing and cylinder. The interpolation points are shown.

This example illustrates some important advantages and disadvantages of composite grids. The

advantage was gained because the grid generation problem was simplified by decomposing the domain

into simpler problems. The disadvantage came when the grids had to be joined together along a

physical boundary.

M6 wing: In this section we use the ideas of the previous section to create a grid fi)r the ONERA

M6 wing which is free from artificial coordinate singularities. The M6 wing does, however, have a

sharp trailing edge. The geometry of the M6 wing is defined by a sequence of cross-sections. Each

cross-section is defined by a set of points. We fit a cubic spline to each cross section, parameterized

by pseudo-arclength. Thus if the cross-section a.t _ = (i is defined by the points

then we define the pseudo-arclength by sl = 0 and

where C is chosen so that sn, = 1. We fit cubic splines

Y,(s) = spline({(sj, y:)})

Z,(s) = spline({(s,,z,)})

We use (linear) interpolation between cross-sections to define the surface of the wing everywhere:

=
f.3(O, _) = (1 - o_)Z,(s) + c_Z,+_(s)

= (¢- , <_¢ < ¢,+,

The cross-sections at the wing tip should converge to a point. Moreover in order that the tip be

smooth the cross-sections should converge to an ellipse. To ensure these conditions we slightly deform

the tip of the wing. The definition of the cross-sections for the wing are thus

M6 wing: (r,,,'2) _ (z,,z2, z3)

(x_,x2, x3) = (L_, tanh(flp)f_(O,_), ta.nh(flp)f_(O,_))

where L is the length of the wing and where _/3is chosen sufficiently large so as to not significantly

change the shape of the wing tip. The composite grid fi)r an M6 attached to a cylinder is shown in

figure (8).
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Component grids created from CAD Package: A common representation of surfaces in

c(,mputcr aided design (CAD) packages is that of a Co,)ns patch [8], also known as transfinite in-

terp(,lati()n [9]. The Co()ns patch is defined as a mapping from the unit square into three-space. In

this rcprcsentati¢,n tile unit square (rl, r2) is divided into an array of sub-patches. There are n, × nj

such subpatches. Each subpateh is defined as a polynomial, mapping the unit square (uj, u_) (of the

subpatch) into x E /_z.
nu--I n_--I

SubpatclL: xi,(u,, u2) = E E x,,,,u,TM '_u 2" (10)
m=0 n=l

The subpatch boundaries, rl = rj,,, i = 1,...,n,- 1 and r2 = r_,_,where _ t3X,n n are c()IIstants.

j = I,...,,_3 - I, are equally spaced in the (rl, r2) plane,

i j
7"1 t -- i = 1, n, , r_,, -

nl +1 ' '"' n_+l ' j= 1,...,n 3 .

The full mapping is defined as

rt -- rl'i r2 -- r2J ) for rl,, < rl < r1,++1 and r2j < r 2 < r2j+l
xCrl'r2) -- x'3Crl,,+ ' - r,,,' r2j+l -r2, J - - - -

The smoothness of the multi-patch surface x(rl, r2) is obtained by placing constraints on the sub-

patch mappings at the b(mndaries of the sub-patches. Often patches are not parametrically smooth

but only geometrically smooth: the derivatives with respect to rl or r2 may not be continuous across

different subpatches. In general we require parametric smoothness of surfaces if we wish to use the

grid to sc,lve a PDE problem. In this case we may want to reparameterize the patch to create a

smooth parameterization. We are working on a variety of methods for this purpose. In figure (9) we

show a composite grid for s,nne surfaces created from the CATIA computer aided design package.

This grid shows a wing cCmnected to an engine nacelle by a pylon.

CREATING COMPONENT GRIDS FROM INTERSECTING SURFACES

Curves of Intersection: The first step in defining a grid in the region where two surfaces

intersect is to define and parameterize the curve of inte.rsection. Even assuming that the curve of

intersection is well defined, consisting of one connected component, the parameterization of this curve

is not well defined. This parameterization will be important when we wish to create a grid.

Supp()se we have tw,) surfaces, S, : [0, 1] 2 --_ R 3, i = 1, 2 mapping the unit square into three-

dimensional space,

S, = {x= S,(r,) : r,= (r,,s,)e [0,112}

anti suppose these surfaces intersect along some curve (figure (10)). Denote this curve of intersection

by C : [0, 1] _ R 3,

c = {x = : e [0,11}.
As the curve C(s) traces out a path on the surface S, it will also trace out a path on the unit square

which is mapped to tile surface S,. Denote this two-dimensional curve on the unit square of S, by

n;: [0, 1] _ [0, 1] _,

R, = {r=Ri(s) : se[0,1]}.
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The curves Ri(s) satisfy

C(s) = S,(Ri(s)) se[0,1], {=1,2 (11)

We see that the curve of intersection can be represented in three ways, C(s), SI(RI(s)) and S2(R2(s)).

For consistency we want a numerical representation for these curves so that the defining conditions

(11) are satisfied precisely (up to round off errors). This means that when we evaluate the curve we

must solve the nonlinear equations (11), using Newton's method for example. That is given a value

of s we determine {C(s), R, (s), R2(s)} satisfying (11). We will keep an accurate approximation to

the curve to use as a starting guess for Newton. One reason we require such a precise definition for

the curve of intersection is that the curve may be used to define a grid which has very small spacings

between grid lines. In this case a less accurate representation of C or Ri may lead to erroneous results

when interpolation points are computed for the overlapping grid.

One way to choose the parameterization of C(s) is to use one of rl, sl, r2, s2 to parameterize the

curve. For example if the curve Rl(s) is a single valued function of sl, as in figure (10), then we may

use s = rl. The equations defining C(s) would be

c(s) = s,(r,)  =1,2
Sl = s (12)

For given s there are 7 equations for the 7 unknowns C(s), rl = R,(s), i = 1, 2. These equations

can be solved by bisection in the variable rl. Another way to choose the parameterization of C(s) is

to base the parameterization on another curve which is close to C. Thus suppose we have another

approximate intersection curve CA(s). Given s we define C(s) to be the point on C which intersects

the plane which is normal to the curve CA at the point CA(s), see figure (11).

c(s) = S,(r,) i=1,2
0CA

0s (C(s) -C_(s)) = 0

These seven equations define the seven unknowns C(s), ri = Ri(s), i = 1, 2.

Component grids defined using the curves of intersection: We consider a few examples

showing how a component grid can be constructed making use of the curves of intersection. In

these examples the curve of intersection, C(s), between the two surfaces will become the edge of a

component grid. The faces of the component grid adjacent to this edge will lie on the respective

surfaces. To parameterize these faces we will make use of the curves R_(s), corresponding to C(s),

which lie in the unit square coordinates. By construction, the grid we create will have faces that lie

precisely (up to round off errors) on the surfaces.

The geometry of the first example is shown in figure (12) where two concentric cylinders intersect

two planes. The goal is to create the grid x = G(r) which has faces coming from the cylinders and

planes as shown in figure (13). Figure (12) shows the 4 unit squares and the curves of intersection.

To define the faces of G wc use the portions of the surfaces which are bounded by the curves of

intersection. In the unit square coordinates the faces will correspond to the regions bounded by the

images of the curves of intersection. The mapping for the face, Gl(rl, 7"2,0) corresponding to the end

at r3 = 0 of G can be defined as the composite transformation,

GI(TI, r2,0 ) = S1(P1(r,, r2)),
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wherethe mapping P1 in the rl plane can be defined, for example, by transfinite interpolation

r = Pl(rl, r2) _-- (1 - ,'2)Rl(rl) -_- r 2 R2(F1).

The other three faces are defined in a similar manner (figure 13). The grid G is then defined as a

transfinite interpolation between these four faces

G(r,,r2, r3) = (1-r,)G,(0, r2, r3)+r,G(1,r_,,'3)+(1-r3)C,(r,,r_,0)+r3G(r,,r2,1)

-{(I- -r3)G,(0,0)+r3G(0,r=,i)]

+rl [(i--r3)Gl (i,r2,0) -I-r3G(l, r2,i)]}

Figure (14) shows some surfaces and a grid that have been created using these techniques. Note

that this parameterization of the grid G will only be smooth if the parameterizations of the curves

of intersection, Ci(s) are defined in a consistent way. A major catastrophe occurs, for example, if

opposite faces have parameterizations defined in opposite directions so the grid folds over on itself. In

a less severe case the grid lines may become highly skewed. Even if the parameterization is still single

valued we wish to avoid such cases since finite difference approximations are usually less accurate for

skewed grids.

Grid for two intersecting spheres: In the second example we create a grid to be used in the

region where two spheres (actually spherical shells) intersect. This collar grid will be used to join the

spheres and looks something like a torus. Two of the faces of this collar grid lie on the the surfaces of

the spheres. The other two faces lie on spherical shells which are offset from the spheres. The collar

grid is shown in figure (15). The composite grid for the two spheres in shown in figure (16). Only

the grids on the surfaces of the spheres are shown but the collar grid can be recognized.

Wing on a fuselage - approach 2: We use the techniques for creating grids from intersecting

surfaces to connect a wing to a fuselage. We first define surfaces for a cylinder and a wing with

Joukowsky cross-sections. Another wing-like surface is defined by offsetting the wing in the normal

direction. The two wing surfaces are intersected with the cylindrical surface and a wing grid is defined

in the region bounded by the intersections. The composite grid is shown in figure (17).

CONCLUSIONS

We have given a brief description of some techniques for the construction of overlapping grids in

three space dimensions. We have shown how to create grids for surfaces that are defined by cross-

sections. We have described some ways to create grids in the regions where surfaces intersect. These

grids are defined by smooth transformations and are free from artificial coordinate singularities. The

ability to create smooth grids for complicated regions is an important first step towards the accurate

numerical solution of PDEs on such regions. The results presented in this paper show some of the

potential advantages of using overlapping grids to create grids for three dimensional geometries.

However, there is still much work to be done to make the grid construction problem easier and more

automatic.
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Figure: 1: I)rthogral)hic projection
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Figure 2: Variables associated with {he orthographic projection



Figure 3: Ow_.rlappinggrid fi_ra,sphere

Figure 4: Overlappinggrid for a spheresh,,winginterpolation points

427



Figure 5: Overlapping grid f_r an ellipse sh,_wing interpolation points
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Figure 6: ()verlapping grid f_r ,louk,,wsky wing on a cylinder
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Figure 7: Attaching a wing t() a fl]selage - approach [

Figure 8: Overlapping grid for an M6 wing on a cylinder
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Figure 9: Overlapping grid for a wing, pyl_)n and engine nacelle
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Figure 10: Curve of intersection for a cylinder and a plane
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Figure 11: Paramctcrizing the curve of intersection with a nearby curve
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Figure 12: Curves ofintersccti(m fi,r Gj
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Figure 13: Grid (;l and the images _,f the f_ces in the unit squares
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Figure 14: Creating a c(,lnt)onent grid by intersecting surfaces



Figure 15: Colla,rgrid bct,weentw,_int_'rs¢'ctingsphericalshcUs

Figure'16: Overl_lppinggrid f_r t,w_intersectingspheres
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l."igure 17: Overlapping grid created using ii, tersecting surfaces
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